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Abstract. Convex envelopes of nonconvex functions are widely used to calculate lower bounds
to solutions of nonlinear programming problems (NLP), particularly within the context of spatial
Branch-and-Bound methods for global optimization. This paper proposes a nonlinear continuous
and differentiable convex envelope for monomial terms of odd degree, x2k+1, where k ∈ N and the
range of x includes zero. We prove that this envelope is the tightest possible. We also derive a linear
relaxation from the proposed envelope, and compare both the nonlinear and linear formulations with
relaxations obtained using other approaches.
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1. Introduction

One of the most effective techniques for the solution of nonlinear programming
problems (NLPs) to global optimality is the spatial Branch-and-Bound (sBB)
method (Tuy, 1998). This requires the computation of a lower bound to the solution,
usually obtained by solving a convex relaxation of the original NLP (Ryoo and
Sahinidis, 1995; Maranas and Floudas, 1995; Adjiman and Floudas, 1996; Smith
and Pantelides, 1997). The formation and tightness of such a convex relaxation are
critical issues in any sBB implementation.

As shown in (Smith, 1996) and (Smith and Pantelides, 1997; Smith and Pan-
telides, 1999), it is, in principle, possible to form a convex relaxation of any NLP
by isolating the nonconvex terms and replacing them with their convex relaxation.
Tight convex underestimators are already available for many types of nonconvex
term, including bilinear and trilinear products, linear fractional terms, and concave
and convex univariate functions. However, terms which are piecewise concave and
convex are not explicitly catered for. A frequently occurring example of such a
term is x2k+1, where k ∈ N and the range of x includes zero. A detailed analysis
of the conditions required for concavity and convexity of polynomial functions has
been given in (Maranas and Floudas, 1995); however, the results obtained therein
only apply to the convex underestimation of multivariate polynomials with positive
variable values. For monomials of odd degree, where the variable ranges over both
negative and positive values, no special convex envelopes have been proposed in
the literature, and one therefore has to rely either on generic convex relaxations
such as those given by Floudas and co-workers (Androulakis et al., 1995; Adjiman
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Figure 1. Tightest (nonlinear) convex envelope of x2k+1.

and Floudas, 1996) or on reformulation in terms of other types of terms for which
convex relaxations are available.

In this article, we propose a convex nonlinear envelope for odd power terms of
the form x2k+1 (k ∈ N), where x ∈ [a, b] and a < 0 < b. The envelope derived
is continuous and differentiable everywhere in [a, b]. We also derive a tight linear
relaxation. We compare both of these relaxations with convex relaxations derived
using other methods.

2. Statement of the problem

Maranas and Floudas (1995) discussed the generation of convex envelopes for
general univariate functions. Here we consider the monomial x2k+1 in the range
x ∈ [a, b] where a < 0 < b. Let c, d be the x-coordinates of the points C,D where
the tangents from points A and B respectively meet the curve (see Figure 1). The
shape of the convex underestimator of x2k+1 depends on the relative magnitude of
b and c. In particular, if c < b (as is the case in Figure 1), a convex underestimator
can be formed from the tangent from x = a to x = c followed by the curve
x2k+1 from x = c to x = b. On the other hand, if c > b (cf. Figure 2), a convex
underestimator is simply the straight line passing through A and B.

The situation is similar for the concave overestimator of x2k+1 in the range x ∈
[a, b]. If d > a, the overestimator is given by the upper tangent from B to D
followed by the curve x2k+1 fromD to A, as shown in Figure 1. On the other hand,
if d < a, the overestimator is just the straight line from A and B. It should be noted
that the conditions c > b and d < a cannot both hold simultaneously.
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Figure 2. The case when c > b.

3. The tangent equations

The discussion in Section 2 indicates that forming the convex envelope of x2k+1

requires the determination of the tangents that pass through points A,C and B,D.
Considering the first of these two tangents and equating the slope of the line AC to
the gradient of x2k+1 at x = c, we derive the tangency condition:

c2k+1 − a2k+1

c − a = (2k + 1)c2k (1)

Hence c is a root of the polynomial:

P k(x, a) ≡ (2k)x2k+1 − a(2k + 1)x2k + a2k+1 (2)

It can be shown by induction on k that:

P k(x, a) = a2k−1(x − a)2Qk(
x

a
) (3)
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Table 1. Numerical values of the roots of Qk(x)
for k = 1, .., 10 (to 10 significant digits).

k rk k rk

1 −0.5000000000 6 −0.7721416355

2 −0.6058295862 7 −0.7921778546

3 −0.6703320476 8 −0.8086048979

4 −0.7145377272 9 −0.8223534102

5 −0.7470540749 10 −0.8340533676

where the polynomial Qk(x) is defined as:

Qk(x) ≡ 1 +
2k∑
i=2

ixi−1. (4)

Thus, the roots of P k(x, a) can be obtained from the roots� of Qk(x). Unfortu-
nately, polynomials of degree greater than 4 cannot generally be solved by radicals
(what is usually called an “analytic solution”). This is the case forQk(x) for k > 2.
For example, the Galois group of Q3(x) ≡ 6x5 + 5x4 + 4x3 + 3x2 + 2x + 1 is
isomorphic to S5 (i.e., the symmetric group of order 5) which is not solvable since
its biggest proper normal subgroup is A5, the smallest non-solvable group. For
details on Galois theory and the solvability of polynomials, see Stewart (1989).

4. The roots of Qk(x) and their uniqueness

Unlike P k(x, a), the polynomial Qk(x) does not depend on the range of x being
considered. Moreover, as shown formally in Section 4.1 below, Qk(x) has exactly
one real root, rk , for any k � 1, and this lies in [−1 + 1/2k,−1/2]. Hence, the
roots ofQk(x) for different k can be computed a priori to arbitrary precision using
simple numerical schemes (e.g., bisection). A table of these roots is presented in
Table 1 for k � 10.

4.1. BOUNDING THE ROOTS OF qk(x)

In this section, we show that Qk(x) has exactly one real root, which lies in the
interval [−1 + 1/2k,−1/2].
� Although Pk(x, a) has the additional root x = a, this is not of practical interest.
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PROPOSITION 4.1. For all k ∈ N, the following properties hold:

Qk(0) = 1
Qk(−1) = −k

}
(5)

∀x > 0

(
dQk(x)

dx
> 0

)
(6)

∀x � −1
(
Qk(x) < 0

)
(7)

Proof. (5): Qk(0) = 1 by direct substitution in (4). Also Qk(−1) = 1 +∑2k
i=2 i(−1)i−1 = ∑k

i=1(2i − 1)− ∑k
i=1 2i = −k.

(6): dQk(x)
dx = ∑2k−1

i=1 i(i + 1)xi−1, hence it is greater than zero whenever x > 0.

(7): For x 
= 0, we can rewriteQk(x) as
∑k

i=1 x
2i−2[2i(x+1)−1]. For x � −1, we

have x2i−2 > 0 and [2i(x + 1)− 1] < 0, thus each term of the sum is negative. �

From the above proposition and the continuity of x2k+1, we can conclude that:
1. there is at least one root between -1 and 0 (property (5));
2. there are no roots for x � 0 (property (6) and the fact that Qk(0) > 0);
3. there are no roots for x � −1 (property (7)).

LEMMA 4.2. For all k ∈ N, the real roots of Qk(x) lie in the interval [−1 +
1/2k,−1/2].

Proof. This is proved by induction on k. For k = 1,Q1(x) ≡ 1+2x has one real
root at x = −1/2 which lies in the set [−1 + 1/2,−1/2]. In particular, Q1(x) < 0
for all x < −1 + 1/2 and Q1(x) > 0 for all x > −1/2.

We now make the inductive hypothesis that, for all j < k, Qj(x) > 0 for all
x > −1/2 and Qj(x) < 0 for all x < −1 + 1/(2j) and prove that the same holds
for j = k. Using (4), we can write Qk(x) = Qk−1(x) + x2k−2(2kx + 2k − 1) for
all k > 1. Since x2k−2 is always positive, we have that:

Qk(x) > Qk−1(x) if x > −1 + 1

2k

Qk(x) < Qk−1(x) if x < −1 + 1

2k

for all k > 1. Now, since −1/2 > −1 + 1/(2k) for all k > 1,Qk(x) > Qk−1(x) >

0 for all x > −1/2 by inductive hypothesis.
Furthermore, by the inductive hypothesis, Qk−1(x) < 0 for all x < −1 +

1/2(k − 1); since 1/2k < 1/2(k − 1), it is also true that Qk−1(x) < 0 for all x <
−1+1/2k. But since, as shown above,Qk(x) < Qk−1(x) for all x < −1+1/(2k),
we can deduce that Qk(x) < 0 for all x < −1 + 1/(2k).
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We have thus proved that, for all k > 0,

Qk(x) > 0 if x > −1

2
(8)

Qk(x) < 0 if x < −1 + 1

2k
. (9)

The proof of the lemma follows from (8), (9) and the continuity of Qk(x). �

THEOREM 4.3. For all k ∈ N,Qk(x) has exactly one real root, which lies in the
interval [−1 + 1/(2k),−1/2].

Proof. Consider the polynomial P k(x, 1) = 2kx2k+1−(2k+1)x2k+1 defined by
(2). By virtue of (3), we have the relation P k(x, 1) = (x−1)2Qk(x). Consequently,
P k(x, 1) andQk(x) have exactly the same roots for x < 1. Therefore (Lemma 4.2),
all negative real roots of P k(x, 1) lie in the interval [−1+1/(2k),−1/2], and there
is at least one such root.

Now, P k(x, 1) can be written as P k(x, 1) = qk1 (x)+ qk2 (x)+ 1, where qk1 (x) =
2kx2k+1 and qk2 (x) = −(2k + 1)x2k . Since q1 is a monomial of odd degree, it is
monotonically increasing in [−1, 0]. Since q2 is a monomial of even degree with a
negative coefficient, it is also monotonically increasing in [−1, 0].

Overall, then, P k(x, 1) is monotonically increasing in [−1, 0], and consequently
in the interval [−1 + 1/(2k),−1/2] where all its negative real roots lie. Therefore,
there can be only one such root, which proves that Qk(x) also has a unique root in
this interval. �

5. Nonlinear convex envelope

If the roots shown in the second column of Table 1 are denoted by rk, then the
tangent points c and d in Figure 1 are simply c = rka and d = rkb. The lower and
upper tangent lines are given respectively by:

a2k+1 + c2k+1 − a2k+1

c − a (x − a) (10)

b2k+1 + d2k+1 − b2k+1

d − b (x − b) (11)

Hence, the convex/concave envelope for z = x2k+1 when x ∈ [a, b] and a < 0 < b:

lk(x) � z � uk(x) (12)

is as follows:
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− If c < b, then:

lk(x) =
{
a2k+1

(
1 + Rk

(
x
a

− 1
))

if x < c
x2k+1 if x � c

(13)

otherwise:

lk(x) = a2k+1 + b2k+1 − a2k+1

b − a
(x − a) (14)

− If d > a, then:

uk(x) =
{
x2k+1 if x � d

b2k+1
(
1 + Rk

(
x
b

− 1
))

if x > d
(15)

otherwise:

uk(x) = a2k+1 + b2k+1 − a2k+1

b − a
(x − a) (16)

where we have used the constant Rk ≡ (r2k+1
k − 1)/(rk − 1).

By construction, the above convex underestimators and overestimators of x2k+1

are continuous and differentiable everywhere. Moreover, they form the convex
envelope, as the following theorem shows.

THEOREM 5.1. The convex relaxation of x2k+1 for x ∈ [a, b] where a < 0 < b

and k ∈ N given in equations (12)-(16) is the tightest possible.
Proof. First, consider the case where a < d < 0 < c < b. As the convex

underestimator between c and b is the curve itself, no tighter one can be found in
that range. Furthermore, the convex underestimator between a and c is a straight
line connecting two points on the original curve, so again it is the tightest possible.

It only remains to show that lk(x) is convex for any small neighbourhood of c.
Consider the open interval (c− ε, c+ ε), and the straight line segment �(c, c+ ε)
with endpoints (c, lk(c)), (c+ ε, lk(c+ ε)). Because for all x � c, lk(x) ≡ x2k+1 is
convex, all points in �(c, c + ε) lie above the underestimator. If we now consider
�(c− ε, c+ ε), its slope is smaller than the slope of �(c, c+ ε) (because the point
with coordinate c−ε moves on the tangent of the curve at c), yet the right endpoint
c+ ε of the segments is common. Thus all points in �(c− ε, c+ ε) also lie above
the underestimator lk(x). Since ε is arbitrary, the claim holds. A similar argument
holds for the overestimator between a and d.

The cases where a < d < 0 < b � c and d � a < 0 < c < b are simpler as
the underestimator is a straight line in the whole range of x. �

6. Linear relaxation

The convex envelope presented in Section 5 is nonlinear. As convex relaxations are
used to solve a local optimization problem at each node of the search tree examined



164 L. LIBERTI, C.C. PANTELIDES

Figure 3. Linear relaxation of x2k+1.

by the sBB algorithm, using a linear envelope instead may have a significant impact
on computational cost. We can relax the nonlinear convex envelope to a linear
relaxation by dropping the “follow the curve” requirements on either side of the
tangency points, and using the lower and upper tangent as convex underestimator
and concave overestimator respectively, as follows:

a2k+1
(

1 + Rk
(x
a

− 1
))

� z � b2k+1
(

1 + Rk
(x
b

− 1
))

(17)

We can tighten the relaxation further by drawing the tangents to the curve at
the endpoints A,B, as shown in Figure 3. This is equivalent to employing the
following constraints:

(2k + 1)b2kx − 2kb2k+1 � z � (2k + 1)a2kx − 2ka2k+1 (18)

in addition to those in (17).
As has been noted in Section 2, when c > b, the underestimators on the left

hand sides of (17) and (18) should be replaced by the line a2k+1 +(b2k+1 − a2k+1)/

(b − a)(x−a) through points A and B (see Figure 2). On the other hand, if d < a,
this line should be used to replace the concave overestimators on the right hand
sides of (17) and (18). The linear relaxation constraints are summarized in Table 2.

7. Comparison to other convex relaxations

This section considers two alternative convex relaxations of the monomial x2k+1

where the range of x includes 0, and compares them with both the nonlinear
envelope and the linear relaxation proposed in this paper.
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Table 2. Summary of linear relaxations for z = x2k+1, x ∈ [a, b], a < 0 < b

c < b and d > a c > b and d > a c < b and d < a

z � a2k+1(1 + Rk(
x
a − 1)) z � a2k+1 + b2k+1−a2k+1

b−a (x − a) z � a2k+1(1 + Rk(
x
a − 1))

z � b2k+1(1 + Rk(
x
b − 1)) z � b2k+1(1 + Rk(

x
b − 1)) z � a2k+1 + b2k+1−a2k+1

b−a (x − a)

z � (2k + 1)b2kx − 2kb2k+1 z � (2k + 1)a2kx − 2ka2k+1 –

z � (2k + 1)a2kx − 2ka2k+1 – z � (2k + 1)b2kx − 2kb2k+1

7.1. REFORMULATION IN TERMS OF BILINEAR PRODUCTS

One possible way of determining a convex relaxation for z = x2k+1, where a �
x � b and a < 0 < b, is via its reformulation in terms of a bilinear product of x
and the convex monomial x2k:

z = wx

w = x2k

a � x � b

0 � w � wU = max{a2k, b2k}
By replacing the bilinear term wx with the standard linear convex envelope pro-
posed by (McCormick, 1976), and the convex univariate term x2k with the convex
envelope given by the function itself as the underestimator and the secant as the
overestimator, we obtain the following constraints:

aw � z � bw

wUx + bw − wUb � z � wUx + aw − wUa
x2k � w � a2k + b2k − a2k

b − a (x − a)
a � x � b

0 � w � wU

After some algebraic manipulation, we can eliminate w to obtain the following
nonlinear convex relaxation for z:

wUa

a − b (x − b) � z � wUb

b − a (x − a) (19)

bx2k + wU(x − b) � z � ax2k + wU(x − a) (20)

a

(
a2k + b2k − a2k

b − a (x − a)
)

� z � b

(
a2k + b2k − a2k

b − a (x − a)
)

(21)
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Figure 4 shows the convex/concave relaxations for x3 for x ∈ [−1, 1] obtained
using (19)–(21). It also compares them with the nonlinear envelope of section 5
(dashed lines in Figure 4a) and the linear relaxations of section 6 (dashed lines in
Figure 4b).

As can be seen from Figure 4a, the convex relaxation (19)–(21) is generally
similar to that of Section 5 (in that both the underestimator and the overestimator
consist of a straight line joined to a curve), but not as tight. This is to be expected
in view of Theorem 5.1.

On the other hand, the convex relaxation (19)–(21) is slightly tighter than the
linear relaxation of Section 6 in the sub-interval [a, e] where e is the point at which
the curve on the right hand side of (20) intersects the tangent line on the right hand
side of (18); and also in the sub-interval [f, b] where f is the point at which the
curve on the left hand side of (20) intersects the tangent line on the left hand side
of (18). However, the linear relaxation of section 6 is tighter everywhere else.

7.2. UNDERESTIMATION THROUGH α PARAMETER

An alternative approach to deriving convex relaxations of general non-convex func-
tions is the αBB algorithm (Androulakis et al., 1995; Adjiman and Floudas, 1996).
In this case, the convex underestimator Lk(x) is given by x2k+1 +αk(x−a)(x−b),
where αk is a positive constant that is sufficiently large to render the second deriv-
ative d2Lk(x)/dx

2 positive for all x ∈ [a, b]. Similarly, the concave overestimator
Uk(x) is given by x2k+1 −βk(x−a)(x−b) where βk is sufficiently large to render
d2Uk(x)/dx

2 negative for all x ∈ [a, b]. It can easily be shown that the above
conditions are satisfied by the values:

αk = k(2k + 1)|a|2k−1 (22)

βk = k(2k + 1)b2k−1. (23)

The convex relaxation for the case of k = 1 (i.e., the function x3) obtained using
the above approach in the domain x ∈ [−1,+1] is shown in Figure 5. It is evident
that it is looser than those shown in Figures 1 and 3.

8. Conclusion

We have derived a convex nonlinear envelope for monomials of the form x2k+1

where 0 is included in the range of x. The constraints defining it are continuous
and differentiable everywhere in the domain of interest. It can also form the basis
for the derivation of a linear (convex) relaxation that may be more efficient for
use within sBB-type algorithms. Both the envelope and the linear relaxation are
generally tighter than relaxations obtained using reformulation to bilinear products
or using the α-parameter method.
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Figure 4. Nonlinear convex envelope and tight linear relaxation of x3 compared to relaxations
obtained by reformulation to bilinear product.
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Figure 5. Convex/concave relaxations of x3 by α parameter.
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